Changes in dream experience in relation with antidepressant escitalopram treatment in depressed female patients: a preliminary study

RIVASSUNTO. Introduzione. Sleep disturbances have long been considered as a cardinal symptom of endogenous depression and dreams in depressed patients usually differ from those of healthy people. The aim of the present study was to investigate dream subjective experiences and their modifications in relation to clinical response in a group of escitalopram-treated depressed patients. **Methods.** Twenty-seven female patients meeting DSM-IV-TR criteria for Major Depressive Disorder (MDD) and starting SSRI therapy were included in the study. Data about psychopathological status and dreaming subjective experiences were collected at baseline (T0), 4 weeks after the beginning of the treatment (T1) and after further 4 weeks of therapy (T2). **Results.** At T0 dream experience was impaired and negatively toned. Concomitantly with the decrease of symptoms severity, the 8-week escitalopram treatment yielded to significant improvements in the recall of both quantity and quality of dreams; those patients whit lower clinical benefits kept on reporting impaired dream experiences. **Discussion.** The results of the present study evidence how the changes in some specific dreaming characteristics, such as the subjective recall of dream activity, the dream recall quality, the dream emotional content and the dream complexity represent reliable markers of the effectiveness of antidepressant therapy.

KEY WORDS: depression, dream, sleep disturbances, psychopharmacology, escitalopram.

INTRODUCTION

Sleep disturbances have long been considered as a cardinal symptom of endogenous depression. Objectively, polysomnographic studies of depressed patients evidenced that the internal sleep organization is impaired with reduced latency of the first REM sleep episode associated to increased density of REM sleep, a percentage reduction of the total length of deep Slow Wave Sleep (SWS) and an increase in night awakenings.1-3

Riv Psichiatri 2014; 49(4): 187-191

187
Consistently with the abnormalities of sleep organization, dreams in patients with depression usually differ from those of healthy people. During depression, dreams have been reported to be shorter and less frequently remembered\(^6\). Their temporal perspective is generally restricted, with a preponderance of elements pertaining to the past; the setting is usually known and the dream characters are mostly family members\(^11\-14\).

Common depressive themes, such as loss, death, separation have been shown to be prevalent in a number of studies\(^15\,16\); in addition, some authors reported a high frequency of dreams with unpleasant contents, labelled “masochistic”, in which the dreamer was the recipient of rejection, disappointment, humiliation, or similar unpleasant experiences\(^6\,17\,18\).

Several studies showed that antidepressant pharmacological treatments were associated with increased dream recall frequency\(^19\,20\,22\) and with positive changes in dream emotional content\(^12\,18\). However, contradictory data are present on the topic: some studies reported a decrease of dream recall frequency under tricyclic antidepressants\(^21\,22\), phenelzine\(^20\), and SSRIs\(^20\) and unchanged or increased negative dream emotions in patients completely recovered from their depressive episodes\(^23\,24\).

In this context, the aim of the present study was to investigate dream subjective experiences and their modifications in relation to clinical response in a group of escitalopram-treated depressed patients. Among the antidepressant drugs, escitalopram was chosen as it is the most selective SSRIs\(^24\). To minimize variability due to gender differences, only female subjects have been included in the study.

METHODS

Twenty-seven female patients meeting DSM-IV TR criteria for Major Depressive Disorder (MDD) and starting SSRIs therapy were included in the study. Patients were recruited at the outpatient psychiatric clinic of the A. Fiorini University Hospital, Sapienza University of Rome. All participants gave written informed consent and underwent an extended clinical interview by a fully certified consultant psychiatrist.

Subjects with any of the following were excluded: history of psychiatric disorders other than MDD or neurological disorders; lifetime substance abuse; antidepressant pharmacological treatment before the beginning of the study or concomitant use of additional medications.

Clinical data of patients were collected at baseline (T0), 4 weeks after the beginning of the treatment (T1) and after further 4 weeks of therapy (T2).

MDD severity was assessed using the Montgomery-Asberg Depression Rating Scale (MADRS) and the Beck Depression Inventory (BDI). The dream experiences were assessed through two specific questionnaires: the Subjective Experience of Dream questionnaire 1 (SED 1) at T0, that investigated the dream experience in the 4 weeks before T0, and the Subjective Experience of Dream questionnaire 2 (SED 2) at T1 and T2, that investigated the changes in dream experience between T0, T1, and T2. The two questionnaires have been specifically designed by our research team\(^25\) to explore the following dream parameters: subjective recall of dream activity (increased, unchanged, decreased); period of the night with recall of maximum dream activity (throughout the night, just after falling asleep, before awakening), recall of dream quality (clear, confused); dream emotional content (positive, neutral-variable, negative), and dream complexity (increased, unchanged, decreased).

Statistical analyses

Statistical analysis was performed using SPSS V16 (SPSS Inc., Chicago, IL, USA). Crosstabs and \(\chi^2\) test were carried out to assess changes over the course of treatment in the different dream parameters. Repeated-Measures ANCOVAs with time as within-participant factor and age as covariate were carried out to assess clinical changes (MADRS and BDI total score). MANCOVA, yet covarying for age, was finally used to compare MADRS and BDI total scores according to the different patients’ dream characteristics (Bonferroni correction applied). The significant threshold was set at \(p<.05\).

RESULTS

Over the course of treatment, \(\chi^2\) test revealed a significant enhance in the number of patients reporting an increased subjective dream activity [T0-T2, \(\chi^2(1)=12.79, p<.001\); T1-T2, \(\chi^2(1)=5.08, p=.024\)]. A clear dream recall quality [T0-T2, \(\chi^2(1)=6.13, p=.013\)], a positive dream emotional content [T0-T2 and T1-T2, \(\chi^2(1)=4.42, p=.036\)], and a reduced dream complexity [T0-T2, \(\chi^2(1)=5.59, p=.018\)]. A significant enhancement was also found in the number of patients reporting as period of sleep with maximum dream activity the one just before awakening [T0-T2, \(\chi^2(1)=6.31, p=.012\)] (Table 1). Over the course of treatment, repeated-measures ANCOVAs showed a significant improvement in both the MADRS and BDI scores [MADRS, \(F(2,50)=6.87, p=.002\); BDI (Greenhouse-Geisser correction), \(F(2,50)=5.74, p=.012\)]. At T2, MANCOVA revealed a significant effect of dreaming on both the MADRS and BDI scores [subjective dream activity, Pillai’s Trace, \(F(4,46)=4.36, p=.003\); dream emotional content, Pillai’s Trace, \(F(4,46)=4.99, p=.002\); and dream complexity, Pillai’s Trace, \(F(4,46)=3.95, p=.008\)]. Separate univariate ANCOVAs specifically revealed higher MADRS and BDI scores in patients kept on reporting a decreased subjective dream activity [MADRS, \(F(2,23)=9.82, p=.001\); post-hoc pairwise comparisons: MADRS decreased-increased, 21.75±9.74 vs 8.14±4.80, \(p=.001\); MADRS decreased-unchanged, 21.75±9.74 vs 6.89±5.77, \(p=.001\); BDI, \(F(2,23)=11.13, p<.0001\); post-hoc pairwise comparisons: BDI decreased-increased, 20.25±7.89 vs 6.86±3.86, \(p<.0001\); BDI decreased-unchanged, 20.25±7.89 vs 7.78±6.16, \(p=.001\)], a negative dream emotional content [MADRS, \(F(2,23)=16.36, p<.0001\); post-hoc pairwise comparisons: MADRS negative-positive, 29.50±3.53 vs 8.00±5.34, \(p<.0001\); MADRS negative-neutral-variable, 29.50±3.53 vs 8.23±5.48, \(p<.0001\); BDI, \(F(2,23)=11.15, p<.0001\); post-hoc pairwise comparisons: BDI negative-positive, 26.00±7.07 vs 7.37±3.56, \(p<.001\); BDI negative-neutral-variable, 26.00±7.07 vs 8.00±5.66, \(p<.0001\)], and an increased dream complexity [MADRS, \(F(2,23)=9.35, p=.001\); post-hoc pairwise comparisons: MADRS increased-decreased, 20.67±10.26 vs 5.55±5.32,
DISCUSSION

Biorhythm disturbances are common in depression as well as in other psychiatric disorders.26-28 The results of the present study seem to confirm earlier findings of an impaired dream experience in patients with depression.

For what concerns the dreaming assessment at T0, the difficulty in remembering dreams, already found in patients with depression in many previous studies,4-6 is supported by the subjective feeling of a decreased dream activity reported by the majority of patients. In relation to dream emotional content, the results are consistent with previous studies:26-28 before treatment, approximately 50% of patients were not able to identify a predominant dream emotion, whilst the other 50% prevalently experienced negative emotional content and unpleasant mood. The increased dreams' complexity reported by the majority of patients and generally described as greater plot articulation of dreams and/or as dreams with enhanced number of bizarre elements, finally

Table 1. Crosstabs and Fisher or χ² test results of the comparisons amongst T0, T1, and T2 of the different dream characteristics within patients with MDD (Major Depressive Disorder).

<table>
<thead>
<tr>
<th></th>
<th>T0 MDD (n=27)</th>
<th>T1 MDD (n=27)</th>
<th>T2 MDD (n=27)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective recall of dream activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased</td>
<td>2</td>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Unchanged</td>
<td>8</td>
<td>15</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Decreased</td>
<td>17</td>
<td>16</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Period of the night with recall of maximum dream activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throughout the night</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td>n.s.</td>
</tr>
<tr>
<td>Just after falling asleep</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>n.s.</td>
</tr>
<tr>
<td>Before awakenings</td>
<td>12</td>
<td>15</td>
<td>21</td>
<td>n.s.</td>
</tr>
<tr>
<td>Recall of dream quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>11</td>
<td>15</td>
<td>20</td>
<td>T0-T2=.013</td>
</tr>
<tr>
<td>Confused</td>
<td>16</td>
<td>12</td>
<td>7</td>
<td>T0-T2=.013</td>
</tr>
<tr>
<td>Dream emotional content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>T0-T2; T1-T2=.036</td>
</tr>
<tr>
<td>Neutral/variable</td>
<td>13</td>
<td>4</td>
<td>2</td>
<td>T0-T1=.008; T0-T2=.012</td>
</tr>
<tr>
<td>Negative</td>
<td>12</td>
<td>21</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Dream complexity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased</td>
<td>14</td>
<td>7</td>
<td>3</td>
<td>T0-T2=.001</td>
</tr>
<tr>
<td>Unchanged</td>
<td>11</td>
<td>14</td>
<td>15</td>
<td>n.s.</td>
</tr>
<tr>
<td>Decreased</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>T0-T2=.018</td>
</tr>
<tr>
<td>Period of the night with recall of maximum dream activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throughout the night</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td>n.s.</td>
</tr>
<tr>
<td>Just after falling asleep</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>n.s.</td>
</tr>
<tr>
<td>Before awakenings</td>
<td>12</td>
<td>15</td>
<td>21</td>
<td>n.s.</td>
</tr>
<tr>
<td>Recall of dream quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>11</td>
<td>15</td>
<td>20</td>
<td>T0-T2=.013</td>
</tr>
<tr>
<td>Confused</td>
<td>16</td>
<td>12</td>
<td>7</td>
<td>T0-T2=.013</td>
</tr>
</tbody>
</table>

p=.001; MADRS increased-unchanged, 20.67±10.26 vs 10.07±6.45, p=.008. BDI, F(2,23)=4.17, p=.028; post-hoc pairwise comparisons: BDI increased-decreased, 17.00±12.49 vs 7.55±5.96, p=.028; BDI increased-unchanged, 17.00±12.49 vs 8.53±5.72, p=.042] (Table 2). No significant differences were found in the MADRS and BDI scores according to the remaining patients' dream characteristics (Table 2).

Riv Psychiatr 2014; 49(4): 187-191

189
agree with the study of Kramer12 that found in the dreams of depressed patients a lower plausibility compared to a group of organic patients.

Remarkable changes in several dream parameters occurred after the beginning of antidepressant drug therapy. Concomitantly with the decrease of depressive symptoms severity, the 8-week escitalopram treatment yielded to a significant improvement in the recall of both quantity and quality of dreams and, noteworthy, those patients who kept on reporting impaired dream experiences. Specifically, MADRS and BDI scores remained high in those patients who kept on reporting reduced dream activity, negative dream emotional contents and increased dream complexity. Consistently with these findings, an enhancement of dreaming was previously noted during treatment with SSRIs fluoxetine30 and citalopram31.

The reported increased dream activity following the therapy with escitalopram may appear paradoxical in relation to the wide literature data indicating a reduction of REM sleep duration during antidepressant treatment. A possible explanation may be that a significant proportion of dreams also occurs in non-REM sleep23-26. Moreover, patients on antidepressant treatment often show a longer duration of sleep with delayed awakening respect to pretreatment period; since REM activity is more intense during the last part of the sleep, the increased recall of dreams could be mainly related to the recall of this last portion of REM activity1. In addition, a cognitive improvement following recovery from depression might be hypothesized to lead to an amelioration in the memory of dreams89.

The results of the study also indicated that patients on escitalopram treatment showed more clear recall of dream quality, less complex and more emotionally vivid dreams; these data confirm previous findings reported by the majority of authors39,40-43.

It is known that the study of sleep and circadian functions may help physicians in monitoring the progression of mood disorders24-51; the results of the present study evidence how the changes in some specific dreaming characteristics, such as the subjective recall of dream activity, the dream recall quality, the dream emotional content and the dream complexity represent reliable markers of the effectiveness of antidepressant therapy such as that with escitalopram. The easiness with which dream experience alterations can be explored during a clinical interview and the relative precocity with which such alterations appear along antidepressant treatment could make them potential valuable clinical markers.

Further investigations carried out on larger samples as well as in double-blind placebo-controlled designs are needed to better clarify the role of dreaming in depression and even in the prediction of remission from depression.

REFERENCES

25. Fonzi L, Moscariello MM, Matteucci G, Pucci D, Bersani G.

30. Pace-Schott EF, Hobson JA, Stickgold R. The fluxuetime mediated increase in NREM eye movements can be detected in the home setting using the Nightcap. Sleep Res 1994; 23: 459.

