The role of stress and psychiatric comorbidities as targets of non-pharmacological therapeutic approaches for migraine

SUMMARY. This narrative review addresses the interconnections among stress, mental disorders and migraine with a specific focus on non-pharmacological interventions that may be effective in improving both migraine and the psychiatric comorbidity. Migraine is often comorbid with depression, anxiety, personality disorders, and sleep disorders. Subjective stress and stressors are common triggers for migraine attacks and are risk factors for chronification, whilst mental disorders and stress responses are closely linked in a bidirectional relation. Recent studies show that psychiatric comorbidity is associated with migraine severity, worse outcomes, increased disability and reduce quality of life. Numerous studies on non-pharmacological interventions for migraine were published and behavioural treatments included biofeedback, cognitive-behavioural therapy, relaxation training, stress management and brief psychodynamic psychotherapy. Taken together, psychological interventions proved to be effective in migraine treatment and a combination of pharmacological and psychological treatment appear to be more effective than either medication or psychotherapy alone. Non-pharmacological interventions effectiveness should be due to the improvement of migraine, stress-related vulnerability and mental disorders together and the combined treatment could prevent the chronification circuit of migraine. Well-designed long-term studies are needed to clarify comparative effectiveness of non-pharmacological techniques in the treatment and the prevention of migraine.

KEY WORDS: migraine, comorbidity, mental disorders, psychiatric disorders, psychotherapy.

INTRODUCTION

People suffering from psychiatric disorders and emotional difficulties may turn to various providers to ask for help, especially mental health specialists. In mental health settings, psychotherapy is one of the main therapeutic options available for patients suffering from a variety of common and mild or moderate mental disorders. Psychological interventions are the only indicated options for personality disorders. Also, psychotherapy is often offered to persons seeking help for emotional distress correlated with stressful somatic conditions such as migraine. The scientific literature shows an association between migraine and several psychiatric conditions that may lead people to seek psychotherapeutic help, such as stress-related emotional difficulties, personality disorders, depressive and anxiety disorders, bipolar spectrum disorders and sleep disorders. Furthermore, many studies developed hypotheses on the contribution of depression and anxiety to the chronification of migraine, increasing the interest in psychological integrative solutions. This paper aims at presenting the interconnections between psychiatric disorders and migraine with a specific focus on non-pharma-
The role of stress and psychiatric comorbidities as targets of non-pharmacological therapeutic approaches for migraine

Cognitive interventions that may be effective in improving both migraine and the psychiatric comorbidity and to prevent the so called chronification circuit.

A non-systematic search was performed using MEDLINE/PubMed database with the following key words: (migraine OR headache) AND (depression or anxiety OR personality disorder); (migraine OR headache) AND (sleep problems OR sleep disorder); (migraine OR headache) AND psych* AND stress; (migraine OR headache) AND (psychological intervention OR psychological treatment OR non-pharmacological intervention OR psychotherapy). In the Table 1, inclusion criteria for papers selection are reported.

MIGRAINE AND PSYCHIATRIC COMORBIDITY

Approximately 12% of the general population suffers from migraine and about 9% of people suffering from episodic migraine have chronic migraine. Several studies suggest that migraine is more than two times more frequent in women than in men. Moreover, women have a greater risk to develop disability as well as a greater risk of evolution from episodic to chronic migraine.

The association between migraine and psychiatric disorders has been described in both clinical and community based populations. Many studies confirmed the presence of a high co-occurrence between depression, anxiety, personality disorders, sleep problems and migraine. Table 1 summarizes main studies on this comorbidity. Patients with migraine presented with a significantly greater number of comorbid psychiatric disorders than patients without migraine. Epidemiologic studies also report a female tendency to development both depression and anxiety disorders in migraineurs with a prevalence twice in women than men. Moreover some studies demonstrated that psychiatric comorbidities are more prevalent in chronic migraine than in episodic migraine.

The presence of a psychiatric comorbidity seems to enhance migraine triggers susceptibility and the number of headaches/month, as well as to increase disability and to reduce quality of life (QoL). Moreover, patients with comorbid mental disorders and migraine show a worse response to migraine treatment (due especially to low adherence), which can negatively modify long-term outcomes of migraineurs patients.

Patients with migraine and a comorbid mental disorder have worse general health outcomes compared with individuals with one condition.

Concerning depression, the nature of the relation with migraine is not clearly demonstrated, but longitudinal studies suggest a bi-directional relationship. Breslau and colleagues, in three longitudinal studies, found similar figures for new onset migraine in subjects with depression and for new onset depression in migraineurs. However, Swartz did not confirm the higher risk of new onset migraine in depressed patients. A recent review and meta-analysis found that the effects of migraine on depression was equal to OR=1.81 (95% CI=1.20-2.72) in cohort studies, and OR=2.00; 95% CI=1.64-2.43 in cross sectional studies, concluding that migraine can play an important role in increasing the incidence of depression in affected patients.

Depression was also a significant predictor of onset of chronic migraine in patients with episodic migraine (OR=1.65, 95% CI=1.12-2.45) and the risk of chronic migraine onset increased with depression severity.

Anxiety Disorders too seems to be strongly related to migraine (Table 1) and a factor potentially associated with reduced perception of efficacy with acute treatment, long-term migraine persistence, headache-related disability and with chronic outcomes.

Concerning Personality Disorders, recent studies suggest that migraineurs and chronic migraineurs have higher rates of certain personality disorders as compared to individuals without migraine (Table 1). The coexistence of a borderline personality disorder seems associated with more pervasive headache, more migraine-related disability, and an increase difficulty to treat due to a higher prevalence of medication overuse and more unscheduled visits for acute migraine treatment. Although less investigated than borderline personality disorder, avoidant personality disorder and obsessive-compulsive personality disorder, which are classified in a different cluster of personality disorders, have also been associated with migraine and seem to negatively impact migraine treatment, contributing to medication overuse and poorer prognosis. However, literature is scarce and a cause-effect relationship between personality disorders and migraine remains unproven.

Sleep problems are more prevalent in patients with migraine than in the general population. The association between severe sleep disturbances and migraine seems to be more pronounced for chronic migraine. Patients with chronic migraine reported shorter nightly sleep times than those with episodic migraine, and were more likely to exhibit trouble falling asleep, staying asleep and sleep triggering headache. As with depression and anxiety, also for sleep disturbances the relationship with migraines appear bidirectional with pain negatively impacting sleep and vice versa.

ROLE OF THE STRESS AND THE CHRONIFICATION CIRCUIT

Stress is the factor listed most often by migraine sufferers as a trigger for their attacks. Some studies show that 50% to 80% of patients report stress as a trigger factor for their migraine attacks. It has been suggested that acute stress can provoke biological modifications lowering the threshold of susceptibility to a migraine attack. Moreover, when behavioural or physiological stressors are frequent and/or severe, allostatic responses can become dysregulated and maladaptive (“allostatic load”), altering the normal response of physiological systems and leading to alterations in brain networks, both functionally and structurally. These effects can lead to abnormal responses to environmental conditions and to the chronification of the disease. The overuse of analgesic medications, might affect allostatic, too. Moreover, it has been well established from the 1970s that stress and psychiatric disorders are extremely related with a bidirectional relationship. Therefore, migraine, stress and psychiatric disorders seem to be tied together, leading patients into a chronification circuit where every condition may provoke or incentivize the other with a final reduction in quality of life and worse outcomes.


263
Table 1. Principals studies on the prevalence of depressive, anxiety and personality disorders in patients affected by migraine.

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Reference</th>
<th>Psychiatric diagnosis</th>
<th>Sample</th>
<th>Psychiatric comorbidity</th>
<th>Results/conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merikangas, 1990</td>
<td>(79) PI</td>
<td>N=457</td>
<td>Depression OR (95% CI): 2.2 (1.1-4.8);</td>
<td>Concluded a higher risk of depression and anxiety disorders in combination.</td>
<td></td>
</tr>
<tr>
<td>Breslau, 1994</td>
<td>(25) PI</td>
<td>N=1007</td>
<td>Depression OR (95% CI): 3.5 (2.2-5.6); New-onset depression 3.6 (2.6-5.2)</td>
<td>Data strongly support clinical observations on migraine-major depression comorbidity.</td>
<td></td>
</tr>
<tr>
<td>Mitsikostas, 1999</td>
<td>(81) HAM-A and D</td>
<td>N=620 (170 with migraine)</td>
<td>Depressive Disorders OR 7.3 (prevalence 4%)</td>
<td>Higher scores of anxiety and depression in migraineurs compared to healthy controls.</td>
<td></td>
</tr>
<tr>
<td>Breslau, 2000</td>
<td>(15) PI DSM-IV</td>
<td>N=1287 (536 with migraine)</td>
<td>Depression OR (95% CI): 3.5 (2.6-4.6); New-onset migraine 2.8, 2.2 to 3.5; New-onset depression 2.4, 1.8 to 3.0</td>
<td>Different causes may underlie the co-occurrence of major depression in persons with migraine compared with persons with other severe headaches.</td>
<td></td>
</tr>
<tr>
<td>Juang, 2000</td>
<td>(82) MINI</td>
<td>N=261 (152 with migraine)</td>
<td>Depressive Disorders: 46%; Anxiety Disorders: 28%</td>
<td>Psychiatric comorbidity, especially MDD and panic disorders, was highly prevalent in patients with migraine.</td>
<td></td>
</tr>
<tr>
<td>Swartz, 2000</td>
<td>(27) PI DSM-III</td>
<td>N=1343 (118 with migraine)</td>
<td>Depression comorbidity OR (95% CI): 3.1, (2.0-4.4); New-onset migraine in depression 0.68 (.02-2.0)</td>
<td>There is a strong cross-sectional relation between depression and migraine, but no association between antecedent depression and incident migraine.</td>
<td></td>
</tr>
<tr>
<td>McWilliams, 2004</td>
<td>(84) PI DSM-III</td>
<td>N=3032 (340 with migraine)</td>
<td>Depression OR (95% CI): 2.8 (2.2-3.7); Panic attacks OR (95% CI): 3.6 (2.6-3.0); GAD OR (95% CI): 3.9 (2.5-6)</td>
<td>Strong association between psychiatric disorders and migraine. Association was stronger for anxiety disorders than depression.</td>
<td></td>
</tr>
<tr>
<td>Atasoy, 2005</td>
<td>(85) PI SCID-CV</td>
<td>N=117 (58 with migraine)</td>
<td>Depressive Disorders: 36%; Anxiety Disorders: 17% (GAD: 8.6%, Panic 6.9%)</td>
<td>High comorbidity of anxiety and depressive disorders in patients with migraine.</td>
<td></td>
</tr>
<tr>
<td>Senaratne, 2010</td>
<td>(14) SCID DSM-IV</td>
<td>N=206 (138 with migraine)</td>
<td>Anxiety Disorders: 67% comorbidity with: MDD/Dysthymia: p=0.008; GAD/PD: p=0.048</td>
<td>The prevalence of migraine was significantly higher in patients with a diagnosis of PD or MDD/dysthymia compared to other psychiatric disorders.</td>
<td></td>
</tr>
<tr>
<td>Goulart, 2014</td>
<td>(85) CIS-R</td>
<td>N=11792 (1261 with migraine)</td>
<td>For daily headaches: MDD OR (95% CI): 6.94 (4.20-11.49); GAD OR (95% CI): 4.0 (2.6-7.0); PD OR (95% CI): 2.1 (0.6-7.1); Mixed anxiety-depressive disorder OR (95% CI): 1.9 (1.1-3.0)</td>
<td>The increase in migraine frequency was associated with progressively higher frequencies of having mood/anxiety disorders.</td>
<td></td>
</tr>
<tr>
<td>Fuller-Thomson, 2017</td>
<td>(86) WHO-CIDI</td>
<td>N=21502 (2232 with migraine)</td>
<td>GAD OR (95% CI): 2.46 (2.0-3.0)</td>
<td>GAD is robustly associated with migraine.</td>
<td></td>
</tr>
</tbody>
</table>
The role of stress and psychiatric comorbidities as targets of non-pharmacological therapeutic approaches for migraine

NON-PHARMACOLOGICAL INTERVENTIONS

Due to the high prevalence of psychiatric comorbidity and stress in migraine and the impact of comorbidity on outcomes, in the last decades attention was directed to psychological interventions aimed at addressing both migraine and mental conditions. Following the history of psychosomatic medicine started a century ago, from the ‘80s studies on psychological treatment of headache and migraine were published and included biofeedback, cognitive-behavioural therapy (CBT), relaxation training, stress management and other techniques. These behavioural therapies have very well-established efficacy for treatment of migraine, as confirmed in numerous studies and meta-analyses. Furthermore, the combination of pharmacological treatment and behavioural therapy has been found to be more effective than either medication or behavioural therapy alone.

CBT is an important treatment component especially for patients with a comorbid psychiatric conditions. The rationale for the use of CBT in migraine management derives from the observation that the way people cope with everyday stressors can precipitate, exacerbate, or maintain headaches and increase headache-related disability and distress.

Advice to identify and avoid triggers, particularly those related to pathological mental conditions (stress and negative

---

<table>
<thead>
<tr>
<th>(Author, year)</th>
<th>Reference</th>
<th>Psychiatric diagnosis</th>
<th>Sample</th>
<th>Psychiatric comorbidity</th>
<th>Results/conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Dindo, 2017)</td>
<td>PI</td>
<td>DSM-IV TR</td>
<td>N=227</td>
<td>MDD OR (95% CI): 3.4</td>
<td>A diagnosis of MDD or GAD was associated with significantly increased risk of having migraine. Personality disorders</td>
</tr>
<tr>
<td>Personality disorders</td>
<td></td>
<td></td>
<td>(31 with migraine)</td>
<td>GAD OR (95% CI): 3.0</td>
<td></td>
</tr>
<tr>
<td>(Wang, 2005)</td>
<td>DAPP</td>
<td></td>
<td>N=160</td>
<td>Personality traits (migraineurs vs controls p&lt;0.5):</td>
<td>Results suggests that migraine is comorbid with borderline personality traits, and avoidant personality traits.</td>
</tr>
<tr>
<td>Personality disorders</td>
<td></td>
<td></td>
<td>(48 with migraine)</td>
<td>- Submissiveness</td>
<td></td>
</tr>
<tr>
<td>(Lake, 2009)</td>
<td>PI</td>
<td>DSM-IV TR</td>
<td>N=267</td>
<td>Personality Disorders: 26%</td>
<td>Most common personality disorders of which migraineurs are affected are from cluster B and cluster C.</td>
</tr>
<tr>
<td>Personality disorders</td>
<td></td>
<td></td>
<td>(226 with CM)</td>
<td>- Cluster B: 16%</td>
<td></td>
</tr>
<tr>
<td>(Manlik, 2012)</td>
<td>SIDP</td>
<td>DSM-III</td>
<td>N=352</td>
<td>Personality Disorders OR (95% CI): 3.44 (1.8-6.7)</td>
<td>The most notable findings are the association of migraine with passive-aggressive and mixed personality disorders (DSM-III)</td>
</tr>
<tr>
<td>Personality disorders</td>
<td></td>
<td></td>
<td>(49 with migraine)</td>
<td>- Passive-aggressive OR (95% CI): 3.18 (1.3-7.8)</td>
<td></td>
</tr>
<tr>
<td>(Kayhan, 2016)</td>
<td>SCID-II</td>
<td></td>
<td>N=205</td>
<td>Any Personality Disorders 81% OR (95% CI) 0.05 (0.02-0.11)</td>
<td>Most prevalent disorders were Obsessive-compulsive (50.5%), avoidant (19%), dependent (19%), passive-aggressive (13.3%), narcissistic (6.7%), borderline (5.7%), histrionic (5.7%) disorders.</td>
</tr>
<tr>
<td>Personality disorders</td>
<td></td>
<td></td>
<td>(105 with CM)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: PI=Psychiatric Interview; HAM-A and D=Hamilton Rating Scale for Anxiety and Depression MDD=Major Depressive Disorder; GAD=Generalized Anxiety Disorder; MINI=Mini-International Neuropsychiatric Interview; HADS=Hospital Anxiety and Depression Scale; CIS-R=Clinical Interview Schedule-Revised; WHO-CIDI=World Health Organization Composite International Diagnostic Interview; PD=Panic Disorder; DAPP=Dimensional Assessment of Personality Pathology; SCID-II=Structured Clinical Interview for DSM IV-TR.
emotions, anger, lack of sleep or excess of sleep, alcohol abuse etc.) as a good means of preventing headaches, has been standard practice for decades. Martin and colleagues recently developed an alternative approach to trigger management called “learning to cope with triggers” (LCT) consisting in a graduated exposure to selected triggers to promote desensitization. They propose an integrative CBT/LCT approach which aims to enhance the effectiveness of CBT in migraineurs. The same Authors in a randomized controlled trial in patients with comorbid headaches and depression, found that the CBT group improved significantly more than the control group mostly in men than women. Indeed, the latest outcome is in contrast with literature and it could be associated with a greater tendency to ruminate in females than males. This ruminative response style may increase the risk to develop a persistence depression and this could explain the gender difference in treatment response. Improvements achieved with treatment were maintained at four month follow-up. Furthermore, advice to avoid triggers altogether may lead to reduced internal locus of control for headaches, with attendant adverse effects on self-efficacy, particularly concerning perceived capacity to cope effectively with triggers.

The self-management model, typically employed in cognitive-behavioural interventions, is very useful in patients with migraine and comorbid psychiatric disorders. This model optimizes medication adherence, effects lifestyle changes, improves functioning, limits disability, teaches way to manage stress and affective distress as well as educates about the role of cognitions and behaviours in health and illness.

In recent studies, different forms of CBT in migraineur patients, have shown to be effective not only to manage patients’ headache pain, but also on reducing the depressed mood and/or the anxiety symptoms. Also the biofeedback treatment proved to be effective both on migraine and anxiety and depressive comorbidity. A recent pilot randomized controlled trial showed that biofeedback added to traditional pharmacological therapy in the treatment of medication overuse headache improved outcome in headache frequency, amount of drug intake and active coping with pain, also after 4 months of follow-up. Though more research is needed on the effects of treating comorbid psychiatric disorders on headache outcomes and vice versa, these findings help to demonstrate the bidirectional relationship between depression, anxiety and migraine.

Other “emerging therapies” include: acceptance and commitment therapy (ACT), mindfulness-based intervention, and behavioural interventions that target comorbid conditions as sleep disturbances. Though existing studies are small, these approaches have produced positive outcomes, particularly in the domains of improving headache-related functioning and affective distress. There is evidence that relaxation techniques, particularly progressive muscle relaxation, and different biofeedback techniques are effective in reducing frequency and severity of migraine.

In a study on patients with medication overuse headaches, short-term psychodynamic psychotherapy added to pharmacological therapy, at 12-month follow-up, was associated with decreased headache frequency and medication intake, a lower relapse rate, and a lower risk of developing chronic migraine, as compare to pharmacotherapy alone. Less studied, brief psychodynamic treatments appear promising in terms of feasibility compared to standard psychodynamic therapy. Insight oriented approaches could be helpful in decreasing stress-related vulnerability as well as somatization tendencies, potentially leading to long term results. Future studies are needed to demonstrate this hypothesis.

Importantly, all psychological interventions used in migraine proved to be effective in anxiety, depressive and stress-related disorders alone. Hence, the effect in patients with migraine and psychiatric comorbidity should be due to the improvement of migraine, stress-reactions and mental disorders together. In theory, the psychological effect of treatments could also prevent the chronification circuit addressing all conditions involved.

Finally, it is useful to note that the use of psychological techniques in migraineurs with comorbid mental disorders may provide a nonthreatening way to introduce the patient to the process of psychological treatment and thus, to encourage the patient to acknowledge psychological difficulties and accept treatment for psychiatric disorders.

From a mental health perspective, non-pharmacological interventions for mental disorders in children and adolescents are highly indicated to improve long-term outcomes and avoid chronicity. However, most studies on migraine with psychiatric comorbidity are on adults. Only 11 trials from 2010 assessed behavioural approaches, mostly CBT, in adolescents or young adults with headache. Two studies involved only patients with chronic migraine and depression or anxiety were considered as a secondary outcome in 4 studies. Non-pharmacological treatments were shown to produce sizeable effects on headache frequency and marked improvements were noted in depressive and anxiety symptoms. Future well-designed studies are necessary to explore the short- and long-term effectiveness of behavioural intervention in adolescents or young adults with migraine and psychiatric comorbidity.

CONCLUSIONS

Comorbid mental disorders, specially anxiety, depressive, and personality disorders are the rule rather than the exception in migraine. Stress-related vulnerability is associated with both migraine and psychiatric conditions. The co-occurrence of these conditions has a great impact on health. Psychological interventions are clearly indicated and effective for mild/moderate mental disorders and stress vulnerability. Several studies showed their effectiveness in patients with migraine, usually added to pharmacological treatment, suggesting a combined action on psychological and somatic symptoms. Future research is needed to better understand long-term effectiveness and to compare different psychological techniques.

Conflict of interests: the authors have no conflict of interests to declare.

REFERENCES

The role of stress and psychiatric comorbidities as targets of non-pharmacological therapeutic approaches for migraine


51. Holroyd KA, Cottrell CK, O'Donnell FJ, et al. Effect of pre- 

ventive (beta blocker) treatment, behavioural migraine manage- 

tment, or their combination on outcomes of optimised acute 

treatment in frequent migraine: randomised controlled trial. 

BMJ 2010; 341: c4871.

52. Lipchik GL, Nash JM. Cognitive-behavioral issues in the treat- 

ment and management of chronic daily headache. Curr Pain 


53. Andress-Rothrock D, King W, Rothrock J. An analysis of mi- 

graine triggers in a clinic-based population. Headache 2010; 50: 

1366-70.

54. Martin PR, Reece J, Callan M, et al. Behavioral management of 

the triggers of recurrent headache: a randomized controlled trial. 


Cognitive behavior therapy for comorbid migraine and/or ten- 
sion-type headache and major depressive disorder: an explora- 

57. Parker G, Brothie H. Gender differences in depression. Int 


58. Hankin BL, Abramson LY. Development of gender differences in 


59. Nolen-Hoeksema S. Sex differences in depression. Stanford, 


60. Marlowe N. Self-efficacy moderates the impact of stressful 

61. Lipchik GL, Smitherman TA, Penzen DB, Holroyd KA. Basic 

principles and techniques of cognitive-behavioral therapies for 

comorbidity psychiatric symptoms among headache patients. 


62. Christiansen S, Jürgens TP, Klinger R. Outpatient combined 
group and individual cognitive-behavioral treatment for pa- 
itients with migraine and tension-type headache in a routine clini- 

63. Law EF, Beals-Erickson SE, Noel M, Cleark R, Palermo TM. Pi- 

lot randomized controlled trial of internet-delivered cognitive-

behavioral treatment for pediatric headache. Headache 2015; 

55: 1410-25.

64. Sharma P, Mehta M, Sagar R. Efficacy of transdiagnostic cogni-

tive-behavioral group therapy for anxiety disorders and heada-


assisted autogenic training on headache activity and mood sta-


24: 936.

66. Nestorovic Y, Martin A, Reif W, Andrasik F. Biofeedback treat- 

ment for headache disorders: a comprehensive efficacy review. 


67. Rausa M, Palomba D, Cevoli S, et al. Biofeedback in the pro-

phylactic treatment of medication overuse headache: a pilot 


68. Dindo L, Recober A, Marchman J, O’Hara MW, Turvey C. One- 

day behavioral intervention in depressed migraine patients: ef-


69. Mo'tamed H, RezaeiAmaram P, Tavalliae A. The effectiveness of 
a group-based acceptance and commitment additive therapy on 

rehabilitation of female outpatients with chronic headache: pre-

liminary findings reducing 3 dimensions of headache impact. 


70. Day MA, Thorn BE, Rubin NJ. Mindfulness-based cognitive 

therapy for the treatment of headache pain: a mixed-methods 

analysis comparing treatment responders and treatment non-re-


Headache 2014; 54: 1484-95.

72. Tonelli ME, Wachholtz AB. Meditation-based treatment yiel-

ding immediate relief for meditation-naive migraineurs. Pain 


73. Calhoun AH, Ford S. Behavioral sleep modification may revert 

transformed migraine to episodic migraine. Headache 2007; 47: 

1178-83.

74. Smitherman TA, Walters AB, Davis RE, et al. Randomized con- 
rrolled pilot trial of behavioral insomnia treatment for chronic 


75. Smitherman TA, Wells RE, Ford SG. Emerging behavioral treat-


76. Kropp P, Meyer B, Meyer W, Dresler T. An update on behavio-

ral treatments in migraine - current knowledge and future op-


78. Andrasik F, Grazzi L, Sansone E, D’Amico D, Raggi A, Grigna- 


79. Merikangas KR, Angst J, Isler H. Migraine and psychopatholo-


80. Verri AP, Proietti Cecchini A, Gali C, Granella F, Sandrinri G, 


81. Mitsikostas D, Thomas A. Comorbidity of headache and de-


82. Juang KD, Wang SJ, Fuh JL, Lu SR, Su TP. Comorbidity of de-

pressive and anxiety disorders in chronic daily headache and its 


83. Zwart JA, Dyb G, Hagen K, et al. Depression and anxiety di-

sorders associated with headache frequency. The Nord-Trønde-


84. McWilliams LA, Goodwin RD, Cox BJ. Depression and anxiety 

associated with three pain conditions: results from a nationally 


85. Goulart AC, Santos IS, Brunoni AR, et al. Migraine headaches 


86. Fuller-Thomson E, Jayanthikumar J, Agbayaka SK. Untangling 

the Association between migraine, pain, and anxiety: examining 
migraine and generalized anxiety disorders in a Canadian popu-


87. Dindo LN, Recober A, Haddad R, Calarge CA. Comorbidity of 
migraine, major depressive disorder, and generalized anxiety di-

sorder in adolescents and young adults. Int J Behav Med 2017; 

24: 526-34.

88. Lake AE, Saper JR, Hamel RL. Comprehensive inpatient treat-

ment for refractory chronic daily headache. Headache 2012; 52: 

1366-70.

89. Manlick CF, Black DW, Stumpf A, McCormick B, Allen J. Sym-

ptoms of migraine and its relationship to personality disorder in 

Pancheri C et al. 

Riv Psichiatr 2020; 55(5): 262-268

268